>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The scientists responsible for the new molecule believe their breakthrough could be used to turn stem cells into a variety of cell types — paving the way for tissue regeneration.
Human induced pluripotent stem cells are adult stem cells capable of forming any type of cell. Their transformation is dictated by a series of genetic and protein signals. This gene expression process is triggered by specific molecules.
Scientists have previously discovered molecules capable of switching on genetic signals, but have yet to find molecules with the ability to turn off specific genetic signals in pluripotent stem cells.
Researchers at Kyoto University in Japan, however, have developed a new synthetic molecule, PIP-S2, that can alter gene signaling in hiPSCs. The molecule works by binding with a specific section of genetic coding.