>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Now, engineers at ETH Zurich have developed a more efficient method for building with the material, erecting an ultra-thin, curved prototype roof that's 5 cm (2 in) thick on average, and designed to support energy-saving systems in the building.
Although it's since been dismantled to make way for other test structures, the prototype stood 7.5 m (24.6 ft) tall and was ultra-thin, measuring 12 cm (4.7 in) at its thickest and just 3 cm (1.2 in) at the edges. It had a surface area of 160 m2 (1,722 sq ft) and covered an area of 120 m2 (1,292 sq ft), and that discrepancy was down to the fact that the roof arched over, forming shapes that concrete normally wouldn't be capable of without complex support structures.
Instead of using custom-built, single-use wooden or foam scaffolding, the engineers tested a new technique of their own design. A net of steel cables was stretched into the desired shape, and a polymer textile was laid over the top to create a flexible formwork. The shape was controlled by algorithms that distribute the force evenly between the cables and determined just how much concrete needed to be applied to each section. Afterwards, the cable net can be dismantled, reused and reshaped as needed.