>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Doubling the transistors on a regular chip might achieve double the performance doubling the qubits on a quantum computer can provide an exponential speedup depending upon the kind of problem it is trying to solve. Dwave has shown speed ups of 10,000 time or more by doubling the qubits in their quantum annealing systems.
IBM Q scientists have successfully built and measured a 50 qubit processor prototype. Expanding on the 20 qubit architecture, it will be the next-gen IBM Q system. IBM aims to demonstrate capabilities beyond today's classical systems with systems of this size.
The first IBM Q systems available online to clients will have a 20 qubit processor. This new device's advanced design, connectivity and packaging delivers industry-leading coherence times (the amount of time to perform quantum computations), which are double that of IBM's 5 and 16 qubit processors available to the public on the IBM Q experience.