>
Tucker shares 'backroom' info about brawl between him and Israel First crowd…
Why Isn't There a Cure for Alzheimer's Disease?
US Government Revokes 80,000 Visas
OpenAI CEO Sam Altman served legal papers during speech in dramatic on-stage ambush
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

Doubling the transistors on a regular chip might achieve double the performance doubling the qubits on a quantum computer can provide an exponential speedup depending upon the kind of problem it is trying to solve. Dwave has shown speed ups of 10,000 time or more by doubling the qubits in their quantum annealing systems.
IBM Q scientists have successfully built and measured a 50 qubit processor prototype. Expanding on the 20 qubit architecture, it will be the next-gen IBM Q system. IBM aims to demonstrate capabilities beyond today's classical systems with systems of this size.
The first IBM Q systems available online to clients will have a 20 qubit processor. This new device's advanced design, connectivity and packaging delivers industry-leading coherence times (the amount of time to perform quantum computations), which are double that of IBM's 5 and 16 qubit processors available to the public on the IBM Q experience.