>
Christmas Truce of 1914, World War I - For Sharing, For Peace
The Roots of Collectivist Thinking
What Would Happen if a Major Bank Collapsed Tomorrow?
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

Lightning strikes have been known to generate gamma rays, and now a team of Japanese researchers has found that those bursts can create photonuclear reactions in the atmosphere, resulting in the production – and annihilation – of antimatter.
Bursts of gamma rays from lightning were first detected in 1992, thanks to NASA's Compton Gamma-ray Observatory. Since then, these Terrestrial Gamma-ray Flashes (TGF) have been studied intently, and the new research out of Kyoto University has found an unexpected cause of some of the signals.
"We already knew that thunderclouds and lightning emit gamma rays, and hypothesized that they would react in some way with the nuclei of environmental elements in the atmosphere," says Teruaki Enoto, lead researcher on the project. "In winter, Japan's western coastal area is ideal for observing powerful lightning and thunderstorms. So, in 2015 we started building a series of small gamma-ray detectors, and placed them in various locations along the coast."