>
CZ Calls Peter Schiff's Tokenized Gold A 'Trust Me Bro' Asset
Overnight Drone Attack Hits Moscow High-Rise As Putin Warns Of 'Overwhelming' Response
GM Cuts 200 Jobs At Michigan Tech Center Days After Stronger Than Expected Earnings Report
Trump Versus Xi: A Blow-by-Blow Analysis Of The US - China Trade War
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm
You've Never Seen Tech Like This
Sodium-ion battery breakthrough: CATL's latest innovation allows for 300 mile EVs
Defending Against Strained Grids, Army To Power US Bases With Micro-Nuke Reactors

Writing in the journal Quantum Science and Technology, they present a new process for creating superconducting interconnects, which are compatible with existing superconducting qubit technology.
The race to develop the first large-scale error-corrected quantum computer is extremely competitive, and the process itself is complex. Whereas classical computers encode data into binary digits (bits) that exist in one of two states, a quantum computer stores information in quantum bits (qubits) that may be entangled with each other and placed in a superposition of both states simultaneously.
The catch is that quantum states are extremely fragile, and any undesired interaction with the surrounding environment may destroy this quantum information. One of the biggest challenges in the creation of a large-scale quantum computer is how to physically scale up the number of qubits, while still connecting control signals to them and preserving these quantum states.