>
                    
                    
                    
                    
                    
This roof paint blocks 97% of sunlight and pulls water from the air
'Venomous' Republican split over Israel hits new low as fiery feud reaches White House
Disease-ridden monkey that escaped from research facility shot dead by vigilante mom protecting...
Hooters returns - founders say survival hinges on uniform change after buying chain...
The 6 Best LLM Tools To Run Models Locally
 Testing My First Sodium-Ion Solar Battery 
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
 Russia flies strategic cruise missile propelled by a nuclear engine 
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install 
Engineers Discovered the Spectacular Secret to Making 17x Stronger Cement

Normally, solid metals have a rigid, crystalline atomic structure, but as their name suggests, metallic glasses are more like glass, with a random arrangement of atoms. Composed of complex alloys, they get their unusual structure when molten metal is cooled down extremely quickly, which prevents crystals from forming. The end result is a material that's as pliable as plastic during production but strong as steel afterwards, making them useful for objects like golf clubs and gears for robots.
The Yale researchers developed their new version of the material by taking samples of metallic glass and making nanorods out of it. With a diameter of just 35 nanometers, these rods are so tiny that the atoms have no room for a nucleus. The researchers dub the process "nucleus starvation," and it resulted in a new phase of the material.
"This gives us a handle to control the number of nuclei we provide in the sample," says Judy Cha, lead researcher on the project. "When it doesn't have any nuclei — despite the fact that nature tells us that there should be one — it generates this brand new crystalline phase that we've never seen before. It's a way to create a new material out of the old."