>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
One of the major downsides of current cancer diagnosis technologies is that a tumor can often grow to a damaging size by the time imaging methods detect it. Catching a cancer when it metastasizes can also be tricky as doctors generally won't know the disease has spread until it's too late.
This new detection method involves injecting a subject with nanoparticles that emit short-wave infrared light. These nanoparticles travel through the bloodstream and are designed to stick to specific cancer cells. In early mouse experiments the particles accurately identified and tracked breast cancer cells as they spread to several other locations in the animal's body.
"We've always had this dream that we can track the progression of cancer in real time, and that's what we've done here," says corresponding author of the study Prabhas V. Moghe. "We've tracked the disease in its very incipient stages."