>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
One of the major downsides of current cancer diagnosis technologies is that a tumor can often grow to a damaging size by the time imaging methods detect it. Catching a cancer when it metastasizes can also be tricky as doctors generally won't know the disease has spread until it's too late.
This new detection method involves injecting a subject with nanoparticles that emit short-wave infrared light. These nanoparticles travel through the bloodstream and are designed to stick to specific cancer cells. In early mouse experiments the particles accurately identified and tracked breast cancer cells as they spread to several other locations in the animal's body.
"We've always had this dream that we can track the progression of cancer in real time, and that's what we've done here," says corresponding author of the study Prabhas V. Moghe. "We've tracked the disease in its very incipient stages."