>
Widow of killed fire chief not satisfied with Secret Service suspensions...
Gunman leaves multiple injured at church after shooting cop at Kentucky's Blue Grass Airport
One year later: White House highlight Trump's legacy on anniversary of assassination attempt
Arizona homeowner fined by petty HOA for act of kindness during extreme heat
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
There five leading quantum computing approaches being explored worldwide: silicon spin qubits, ion traps, superconducting loops, diamond vacancies and topological qubits. University of New South Wales has new scalable CMOS chip design based on silicon spin qubits. They believe the design will scale to millions of qubits for universal computation and with error correction.
The main problem with all current approaches is that there is no clear pathway to scaling the number of quantum bits up to the millions needed without the computer becoming huge a system requiring bulky supporting equipment and costly infrastructure.
UNSW relies on its silicon spin qubit approach – which already mimics much of the solid-state devices in silicon that are the heart of the US$380 billion global semiconductor industry and it will work with spin qubit error correcting code into existing chip designs, enabling true universal quantum computation.