>
Tucker shares 'backroom' info about brawl between him and Israel First crowd…
Why Isn't There a Cure for Alzheimer's Disease?
US Government Revokes 80,000 Visas
OpenAI CEO Sam Altman served legal papers during speech in dramatic on-stage ambush
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

There five leading quantum computing approaches being explored worldwide: silicon spin qubits, ion traps, superconducting loops, diamond vacancies and topological qubits. University of New South Wales has new scalable CMOS chip design based on silicon spin qubits. They believe the design will scale to millions of qubits for universal computation and with error correction.
The main problem with all current approaches is that there is no clear pathway to scaling the number of quantum bits up to the millions needed without the computer becoming huge a system requiring bulky supporting equipment and costly infrastructure.
UNSW relies on its silicon spin qubit approach – which already mimics much of the solid-state devices in silicon that are the heart of the US$380 billion global semiconductor industry and it will work with spin qubit error correcting code into existing chip designs, enabling true universal quantum computation.