>
Deporting Illegals Is Legal - Military In America's Streets Is Not!
Turn Your Homesteading into a Farm (Making Money on the Homestead) | PANTRY CHAT
"History Comes In Patterns" Neil Howe: Civil War, Market Crashes, and The Fourth Turning |
How Matt Gaetz Escaped Greenberg's Honeypot and Exposed the Swamp's Smear Campaign
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Quanan Pang, who led the research while a PhD candidate at Waterloo, and his fellow researchers made a breakthrough involving the use of negative electrodes made of lithium metal. The material has the potential to dramatically increase battery storage technology.
With increased energy density and therefore energy capacity, electric vehicles could see as much as three times the range on a single charge.
"This will mean cheap, safe, long-lasting batteries that give people much more range in their electric vehicles," said Pang.
In developing the technology, two challenges arose for researchers. The first involved a risk of fires and explosions caused by microscopic structural changes to the lithium metal during repeated charge-discharge cycles. The second involved a reaction that creates corrosion and limits both how well the electrodes work and how long they last.
Researchers were able to solve both problems by adding a compound of phosphorus and sulfur to the electrolyte liquid carrying a charge within batteries.