>
What are they hiding? New evidence in Charlie Kirk's shooting shakes up the case | Redacted
The Media Is LYING About This 'Miracle Cancer Study' - Here's What They're Hiding |
Trump Administration Planning Panama Style Attack On Venezuela
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Quanan Pang, who led the research while a PhD candidate at Waterloo, and his fellow researchers made a breakthrough involving the use of negative electrodes made of lithium metal. The material has the potential to dramatically increase battery storage technology.
With increased energy density and therefore energy capacity, electric vehicles could see as much as three times the range on a single charge.
"This will mean cheap, safe, long-lasting batteries that give people much more range in their electric vehicles," said Pang.
In developing the technology, two challenges arose for researchers. The first involved a risk of fires and explosions caused by microscopic structural changes to the lithium metal during repeated charge-discharge cycles. The second involved a reaction that creates corrosion and limits both how well the electrodes work and how long they last.
Researchers were able to solve both problems by adding a compound of phosphorus and sulfur to the electrolyte liquid carrying a charge within batteries.