>
SpaceX Starship HeatShield Solution
One Million Signatures For French Immigration Referendum
Man Faces Potential Attempted Murder Charge In France After Stabbing Home Intruder
Report: Older Man Initially Arrested After Kirk Shooting Confessed to Distracting Police...
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
A collaboration between the University of Cambridge and Jilin University has published the results of a computational search for materials that might superconduct at even higher temperatures.
An extensive search for the stable structures and compositions of rare earth hydrides was performed using first principles density functional theory based methods. The superconducting transition temperatures for the stable metallic compounds were calculated using the same theoretical techniques that were used to anticipate the superconductivity in dense hydrogen sulphide. The highest temperatures were predicted for pressures that are around those found in the center of the Earth. It is a challenge for the future to find materials that superconduct at high temperatures and everyday low pressures.