>
Trump Morphs From Asset to Liability for Israel
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
US-Russia detente pushing ahead with or without Zelensky
Silver up over $2.26... Today! $71.24 (and Gold close to $4500)
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

A collaboration between the University of Cambridge and Jilin University has published the results of a computational search for materials that might superconduct at even higher temperatures.
An extensive search for the stable structures and compositions of rare earth hydrides was performed using first principles density functional theory based methods. The superconducting transition temperatures for the stable metallic compounds were calculated using the same theoretical techniques that were used to anticipate the superconductivity in dense hydrogen sulphide. The highest temperatures were predicted for pressures that are around those found in the center of the Earth. It is a challenge for the future to find materials that superconduct at high temperatures and everyday low pressures.