>
Special Christmas Eve War Room! FBI Finds Millions More Epstein Docs, PLUS…Updates on Trump's...
The U.S. Government Is Not the Daddy of U.S. Oil Companies
Aussie Leaders Crush Online Free Speech To Prop Up Failing Multiculturalism
Cocaine Dogs & 'Safe Space Ambassadors': Rand Paul Airs The Festivus (Budget) Grievances
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

The study, by scientists at AgeX and BioTime, in collaboration with Insilico Medicine, utilized artificial intelligence (AI) technology to parse millions of gene expression data points to decipher the complex mechanisms controlling natural tissue regeneration. The results, published in the peer-reviewed scientific journal Oncotarget, showed that the candidate genes are expressed differently in tissues early in development when they are capable of regeneration compared to later in life when regeneration can no longer take place. Surprisingly, some of the genes, including one highlighted in the study, COX7A1, displayed a rare profile of being nearly universally dysregulated in diverse types of cancer. The discoveries may lead to novel strategies to induce Tissue Regeneration (iTRTM) in the context of trauma or age-related degenerative disease, as well as treat and diagnose cancer.