>
The Secret Campaign To Stop RFK Jr.
You Can't Grow Your Way Out: The GOP's Debt Delusion Exposed
Musk Sets Off Fireworks: Polls X Users on End of Two-Party 'Uniparty' System...
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Now University of Rochester researchers have succeeded in creating particles with negative mass in an atomically thin semiconductor, by causing it to interact with confined light in an optical microcavity.
Above – In this optical microcavity, created by the lab of Nick Vamivakas, confined light interacts with an atomically thin semiconductor to create particles with negative mass. The device also presents "a way to generate laser light with an incrementally small amount of power," says Vamivakas, an associate professor of quantum optics and quantum physics at Rochester's Institute of Optics. (Illustration by Michael Osadciw/University of Rochester)
This alone is "interesting and exciting from a physics perspective," says Nick Vamivakas, an associate professor of quantum optics and quantum physics at Rochester's Institute of Optics. "But it also turns out the device we've created presents a way to generate laser light with an incrementally small amount of power."