>
Ranchers in Washington are challenging the state over a fundamental constitutional question...
President Milei launched an account in English but it was suspended by X a few hours later.
The Trump Doctrine: "They Have It. We Want It. We Take It."
Event 201 Pandemic Exercise: Segment 4, Communications Discussion and Epilogue Video
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging

Now University of Rochester researchers have succeeded in creating particles with negative mass in an atomically thin semiconductor, by causing it to interact with confined light in an optical microcavity.
Above – In this optical microcavity, created by the lab of Nick Vamivakas, confined light interacts with an atomically thin semiconductor to create particles with negative mass. The device also presents "a way to generate laser light with an incrementally small amount of power," says Vamivakas, an associate professor of quantum optics and quantum physics at Rochester's Institute of Optics. (Illustration by Michael Osadciw/University of Rochester)
This alone is "interesting and exciting from a physics perspective," says Nick Vamivakas, an associate professor of quantum optics and quantum physics at Rochester's Institute of Optics. "But it also turns out the device we've created presents a way to generate laser light with an incrementally small amount of power."