>
A Green Beret's Guide to a REAL Survival Garden
Teaching my grandchildren so they don't have to rely on the Government
NATO's Three-Pronged Response To The Latest Russian Scare Raises The Risk Of A Larger War
Holy SH*T! Now Bill Gates wants to jab your meat and you won't even know | Redacted
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Researchers identified critical parameters against which to assess progress and provided a summary of published efforts.
Using lithium (less than 30 microns) rather than thick lithium foils for numerous reasons, including the ability to detect soft shorts.
If the lithium metal electrode can be proven to cycle in small research cells using the four parameters identified here, with material and processing costs consistent with the cost target at scale, additional challenges and opportunities will be evident. A dense lithium foil cycled with high per-cycle utilization is required and will result in significant volume changes in large-format cells; the resulting stresses and shape change may limit cycling and have deleterious side effects. Lithium metal electrodes with minimal volume change, or novel types of large-format cells or packs containing them, are possible solutions.