>
Deporting Illegals Is Legal - Military In America's Streets Is Not!
Turn Your Homesteading into a Farm (Making Money on the Homestead) | PANTRY CHAT
"History Comes In Patterns" Neil Howe: Civil War, Market Crashes, and The Fourth Turning |
How Matt Gaetz Escaped Greenberg's Honeypot and Exposed the Swamp's Smear Campaign
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Here we report an effective scaffold based on crumpled paper ball-like graphene particles. Since they do not aggregate, crumpled graphene balls can readily form a closely packed, continuous solid, which has highly uniform thickness and pore-size distribution. They are lithiophilic and can support fast Li-ion diffusion. Indeed, crumpled paper ball-like graphene particles have scalable Li loading up to 10 mAh cm−2 within tolerable volume fluctuation. High Coulombic efficiency of 97.5% over 750 cycles (1,500 hr) was achieved. Plating/stripping Li up to 12 mAh cm−2 on crumpled graphene scaffold does not experience dendrite growth.
Summary
With its high theoretical capacity and low electrochemical potential, Li metal itself would be the ideal anode for Li-ion batteries. However, practical use of the Li anode has been hindered by its tendency for dendritic growth, which leads to unstable solid electrolyte interphase, volume fluctuation during cycling, and even shorting of the battery. This problem can be solved by employing a conducting, lightweight, and lithiophilic scaffold that can stabilize high loading of Li during cycling and avoid its dendritic filament growth. Here we report that crumpled paper ball-like graphene particles can readily assemble to yield a scaffold with scalable Li loading up to 10 mA hr cm−2 within tolerable volume fluctuation. High Coulombic efficiency of 97.5% over 750 cycles (1,500 hr) was achieved. Plating/stripping Li up to 12 mA hr cm−2 on crumpled graphene scaffold does not experience dendrite growth.