>
2 Hours of Retro Sci-Fi Christmas Songs | Atomic-Age Christmas at a Snowy Ski Resort
Alternative Ways to Buy Farmland
LED lights are DEVASTATING our bodies, here's why | Redacted w Clayton Morris
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

An off-the-wall new study by Brown University researchers shows that terahertz frequency data links can bounce around a room without dropping too much data. The results are good news for the feasibility of future terahertz wireless data networks, which have the potential to carry many times more data than current networks.
Today's cellular networks and Wi-Fi systems rely on microwave radiation to carry data, but the demand for more and more bandwidth is quickly becoming more than microwaves can handle. That has researchers thinking about transmitting data on higher-frequency terahertz waves, which have as much as 100 times the data-carrying capacity of microwaves. But terahertz communication technology is in its infancy. There's much basic research to be done and plenty of challenges to overcome.
For example, it's been assumed that terahertz links would require a direct line of sight between transmitter and receiver. Unlike microwaves, terahertz waves are entirely blocked by most solid objects. And the assumption has been that it's not possible to bounce a terahertz beam around—say, off a wall or two—to find a clear path around an object.