>
United Nations, World Bank Target Small-Scale Chicken Farms in Bird Flu 'Global Summit'
Elon Musk posted this by Scott Adams, on all of the Leftists busted, think on it!
Tulsi Gabbard has tough words for the "empty" people who celebrated Charlie Kirk's mur
Sharaa says agreement with Moscow enabled swift fall of Assad
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Like the horse of Troy, scientists at the Technion have developed a way to sneak synthetic cells right into tumor tissue, where they then begin producing cancer-fighting proteins from the inside. The technique was tested in both cell cultures and in mice, and found to be an effective treatment in both cases.
Cancer cells thrive thanks to some robust defense mechanisms, so finding ways to get past them is a key area of research. In the past, scientists have sent gold nanoparticles inside tumors by hitchhiking on white blood cells, before heating the gold with near-infrared light to kill the cancer from within. Others examined the possibility of administering a "prodrug" that remained inactive until it detected cancer markers, and then began producing drugs from inside the tumor.
The new work follows a similar function as the latter. The Technion scientists loaded molecular machines inside lipid-based particles that resemble biological cell membranes, creating what they call "nano-factories." Once they're activated by sensing the presence of abnormal cells, these particles kick into gear, producing specific therapeutic proteins and pulling the energy and building blocks they need from the tumor tissue around them.
"By coding the integrated DNA template, the particles we developed can produce a variety of protein medicines," says Avi Schroeder, one of the lead researchers on the study. "They are modular, meaning they allow for activation of protein production in accordance with the environmental conditions. Therefore, the artificial cells we've developed at the Technion may take an important part in the personalized medicine trend – adjustment of treatment to the genetic and medical profile of a specific patient."