>
World War III has Already Begun
H.R.1919 - Anti-CBDC Surveillance State Act
Deadly Clashes in Syria's Sweida: What's Really Going On? | Vantage with Palki Sharma | N18G
"False, Malicious, Defamatory" - Trump Demands Unsealing Of Epstein Files,...
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Like the horse of Troy, scientists at the Technion have developed a way to sneak synthetic cells right into tumor tissue, where they then begin producing cancer-fighting proteins from the inside. The technique was tested in both cell cultures and in mice, and found to be an effective treatment in both cases.
Cancer cells thrive thanks to some robust defense mechanisms, so finding ways to get past them is a key area of research. In the past, scientists have sent gold nanoparticles inside tumors by hitchhiking on white blood cells, before heating the gold with near-infrared light to kill the cancer from within. Others examined the possibility of administering a "prodrug" that remained inactive until it detected cancer markers, and then began producing drugs from inside the tumor.
The new work follows a similar function as the latter. The Technion scientists loaded molecular machines inside lipid-based particles that resemble biological cell membranes, creating what they call "nano-factories." Once they're activated by sensing the presence of abnormal cells, these particles kick into gear, producing specific therapeutic proteins and pulling the energy and building blocks they need from the tumor tissue around them.
"By coding the integrated DNA template, the particles we developed can produce a variety of protein medicines," says Avi Schroeder, one of the lead researchers on the study. "They are modular, meaning they allow for activation of protein production in accordance with the environmental conditions. Therefore, the artificial cells we've developed at the Technion may take an important part in the personalized medicine trend – adjustment of treatment to the genetic and medical profile of a specific patient."