>
2025-09-17 -- Ernest Hancock interviews James Corbett (Corbett Report) MP3&4
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
They built a micro-nano structured layer in a surface of traditional gauze fiber with medical long-chain paraffin using nanotechnology, turning the conventional gauze blood-phobic from blood-philic. The gauze is thus freed from blood infiltration after processing with this technology.
They further superimposed the gauze over conventional gauze, using the lower gauze to promote blood coagulation and the upper layer to produce negative pressure to prevent blood soaking and infiltration to achieve effective hemostasis and lower blood loss.
Animal experiments show the survival time of rats bleeding from the carotid artery extended by about 40 percent by the new hemostatic gauze, which is expected to allow more time for victim rescue.
Advanced Healthcare Materials – Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss
Hemostatic fabrics are most commonly used in baseline emergency treatment; however, the unnecessary blood loss due to the excessive blood absorption by traditional superhydrophilic fabrics is overlooked. Herein, for the first time, superhydrophobic/superhydrophilic Janus fabrics (superhydrophobic on one side and superhydrophilic on the other) are proposed: the superhydrophilic part absorbs water in the blood to expedite the clotting while the superhydrophobic part prevents blood from further permeating.