>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
They built a micro-nano structured layer in a surface of traditional gauze fiber with medical long-chain paraffin using nanotechnology, turning the conventional gauze blood-phobic from blood-philic. The gauze is thus freed from blood infiltration after processing with this technology.
They further superimposed the gauze over conventional gauze, using the lower gauze to promote blood coagulation and the upper layer to produce negative pressure to prevent blood soaking and infiltration to achieve effective hemostasis and lower blood loss.
Animal experiments show the survival time of rats bleeding from the carotid artery extended by about 40 percent by the new hemostatic gauze, which is expected to allow more time for victim rescue.
Advanced Healthcare Materials – Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss
Hemostatic fabrics are most commonly used in baseline emergency treatment; however, the unnecessary blood loss due to the excessive blood absorption by traditional superhydrophilic fabrics is overlooked. Herein, for the first time, superhydrophobic/superhydrophilic Janus fabrics (superhydrophobic on one side and superhydrophilic on the other) are proposed: the superhydrophilic part absorbs water in the blood to expedite the clotting while the superhydrophobic part prevents blood from further permeating.