>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
The Ohio State collaborators are one of a handful of successful teams to win this award in an international competition as part of DARPA's Topological Excitations in Electronics (TEE) program. TEE endeavors to design materials with new, controllable functionalities in memory, logic, sensors and quantum information processing — all having critical implications for the nation's economic, energy and defense security.
In magnetic memories, information (for example, a collection of bits) is stored as clusters of spins, which are either an up or a down (or put differently, a one or a zero). These spin clusters, which form the basis of magnetic memories, become less stable when reduced in size.
"As the spin clusters become smaller and smaller, the memory becomes volatile," says Mohit Randeria, professor of physics and principal investigator on the DARPA grant. "Even minor fluctuations due to thermal disturbances at room temperature could lead to spin directions flipping and information being lost."