>
Another one of Bill Gates' evil plans
Crowds break into "Amazing Grace" hymn in Central London tonight in honour of Charlie Kirk
The Central Bank Digital Currency (CBDC) is a tool cloaked in the guise of financial innovation...
We finally integrated the tiny brains with computers and AI
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Researchers at Rice University and the Indian Institute of Science have now isolated a 2D form of the soft metal gallium, dubbed "gallenene," which could make for efficient, thin metal contacts in electronic devices.
Reducing a regular 3D material into two dimensions can fundamentally change its electric, magnetic, physical or chemical properties. Putting aside the attention-grabbing graphene, in recent years scientists have created 2D versions of materials like black phosphorus, molybdenum disulfide, and chromium triiordide, which is so far the only material capable of retaining magnetism in two dimensions.
In its familiar 3D state, gallium has a low melting point of just below 30° C (86° F). That makes it a great candidate for applications that need liquid metals at roughly room temperature, and we've seen gold-gallium and indium-gallium alloys put to work in "metal glue," flexible electronic circuits, fluidic transistors and cancer-hunting "Nano-Terminators."