>
In a jaw-dropping revelation, Sec. Brooke Rollins found 5,000 DEAD PEOPLE getting SNAP,...
ALERT: The Most Important Silver Update You'll See - Mike Maloney w/Alan Hibbard
Interview 1987 – News You WON'T See On The BBC! (NWNW #609)
Foreclosures & Evictions Are Increasing Every Single Month
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

Potential candidates have so far shown up in berries, honey, maple syrup, human breast milk, fungi, frog skin, and even platypus milk, and now a team from Australia and Spain has discovered a promising peptide in the venom of the South American Rattlesnake.
Antibiotic-resistant bacteria, or "superbugs," are one of the most pressing problems facing humanity today. Overprescription and overuse of drugs during the last few decades has led to bacteria that have evolved resistance to them. A recent report warned that if nothing is done, by 2050 we could be "cast back into the dark ages of medicine" where our drugs simply don't work and even the most routine of procedures becomes life-threatening again.
To keep ahead in the arms race, scientists are developing a range of new materials and drugs to fight superbugs. The new study, involving researchers from the University of Queensland in Australia and Pompeu Fabra University in Spain, has tested a new antibiotic candidate found in the venom gland of rattlesnakes.