>
2025-09-17 -- Ernest Hancock interviews James Corbett (Corbett Report) MP3&4
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
* Billions of gallons of water are used each day in the United States for energy production
* huge amounts of energy are consumed in pumping, treating, heating, and delivering water.
* More than 12 percent of the energy used in the U.S. is for water production
* water is a substantial limiter on energy production
One of the top priorities for innovation is desalination. Reverse osmosis has been the state-of-the-art in water desalination for half a century. While it's used in thousands of desalination plants around the world, the process is costly and highly energy intensive, without a lot of room left for improvement.
Berkeley Lab researchers are working on a number of approaches to efficiently separate salt from water, whether it's seawater or brackish water, ranging from understanding the fundamental properties of water at the nanoscale to advanced technologies for water treatment. For example, Dan Miller is leading investigation of a membrane that can yield a higher rate of desalination while also being resistant to fouling, a major obstacle in cost-effective desalination.
And Chinmayee Subban is developing a technology that uses electrochemistry to treat brackish water, which is about one-third as saline as seawater and is prevalent in the United States and other parts of the world, largely as naturally occurring groundwater or through coastal intrusion. Water treated with this technology could be ideal for use in agricultural irrigation.
Another project already underway is groundwater banking, a way to basically save rainwater for a sunny day. In collaboration with the Almond Board of California, Berkeley Lab researcher Peter Nico is testing how best to do groundwater aquifer recharge, combining ground-based and airborne techniques to get geophysical images of the subsurface.