>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Because of a special nanoscale coating, the water structures survive without breaking down into droplets even as the encapsulating fluid changes shape. This new form of 3D printing could give rise to flexible and stretchable liquid electronics, aid chemical synthesis, or serve as a transport and delivery system for nanoscale particles.
The team of researchers led by Tom Russell modified a standard 3D printer so it would inject narrow streams of water directly into a small container filled with silicon oil. The streams of water don't break down into droplets thanks to a special nanoscale surfactant – a substance that reduces surface tension – which separates the water from the surrounding liquid.
The surfactant, a "nanoparticle supersoap," simultaneously disperses gold nanoparticles into the water and binding polymers into the oil. After water is injected, the polymers attach to individual water molecules, forming a soap, vitrifying, and locking the water structures into place even as the surrounding oil changes shape.