>
At Least 10 Children Killed by Israeli Drones While Waiting Outside Clinic for Medical Aid and Food
IRS Gives Churches Blessing to Endorse Candidates
17 Out-Of-Place Artifacts That Suggest High-Tech Civilizations Existed Thousands (Or Millions)...
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
The method uses photons to generate a string of random ones and zeros, and leans on the laws of physics to prove that these strings are truly random, rather than merely posing as random. The researchers say their work could improve digital security and cryptography.
The challenge for existing random number generators is not only creating truly random numbers, but proving that those numbers are random. "It's hard to guarantee that a given classical source is really unpredictable," says Peter Bierhorst, a mathematician at the National Institute of Standards and Technology (NIST), where this research took place. "Our quantum source and protocol is like a fail-safe. We're sure that no one can predict our numbers."
For example, random number algorithms often rely on a source of data which may ultimately prove predictable, such as atmospheric noise. And however complex the algorithm, it's still applying consistent rules. Despite these potential imperfections, these methods are relied on in the day-to-day encryption of data.