>
Enoch AI: The first unbiased machine cognition model defying big pharma narratives
BREAKING EXCLUSIVE: President Trump Leverages Massive New Tariffs Against BRICS Countries...
California Might Stop Making Necessary Debt Payments For 2 Years
US Orders "Immediate Shutdown" Of Mexican Cattle Trade After Cross-Border Parasitic Fly Th
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Researchers outline their proposed combination which would allow for a more stable perpendicular anisotropic energy (PMA), the key driving component in a computer's RAM (random-access memory) or data storage. The material would be made up of ultrathin films, known as Fe monolayers, grown on top of non-magnetic substances, in this case X nitride substrate, where X could be boron, gallium, aluminum or indium. According to the research, this combination showed anisotropic energy would increase by fifty times, from 1 meV to 50 meV, allowing for larger amounts of data to be stored in smaller environments. There is a provisional patent pending which has been filed by UNHInnovation, which advocates for, manages, and promotes UNH's intellectual property.
In an era dependent on extremely large amounts of information, from laptops to phones, Zang says that there is a huge demand for more efficient devices. Creating smaller processors and storage units is an important step, not only for size but for data safety.
"There is a huge movement to switch to magnetic random access memory (MRAM) for storage in computers because it is more stable," said Zang. "Not only is data storage safer, but there is also less radiation emitted from the device. Our calculations and material combination opens the door to possibilities for much smaller computers for everything from basic data storage to traveling on space missions. Imagine launching a rocket with a computer the size of a pin head – it not only saves space but also a lot of fuel."