>
Windows 10 is DEAD in 2025? -- Here's How I Run It SAFELY Forever (No Updates)
GENIUS ACT TRIGGERED: The Biggest BANK RUN in History is COMING – Prepare NOW
European Billionaires Funneled $2 Billion into NGO Network to Fund Anti-Trump Protest Machine
Japan Confirms Over 600,000 Citizens Killed by COVID mRNA 'Vaccines'
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

Researchers outline their proposed combination which would allow for a more stable perpendicular anisotropic energy (PMA), the key driving component in a computer's RAM (random-access memory) or data storage. The material would be made up of ultrathin films, known as Fe monolayers, grown on top of non-magnetic substances, in this case X nitride substrate, where X could be boron, gallium, aluminum or indium. According to the research, this combination showed anisotropic energy would increase by fifty times, from 1 meV to 50 meV, allowing for larger amounts of data to be stored in smaller environments. There is a provisional patent pending which has been filed by UNHInnovation, which advocates for, manages, and promotes UNH's intellectual property.
In an era dependent on extremely large amounts of information, from laptops to phones, Zang says that there is a huge demand for more efficient devices. Creating smaller processors and storage units is an important step, not only for size but for data safety.
"There is a huge movement to switch to magnetic random access memory (MRAM) for storage in computers because it is more stable," said Zang. "Not only is data storage safer, but there is also less radiation emitted from the device. Our calculations and material combination opens the door to possibilities for much smaller computers for everything from basic data storage to traveling on space missions. Imagine launching a rocket with a computer the size of a pin head – it not only saves space but also a lot of fuel."