>
The Banking Elites Are Preparing to Introduction of a Single "World Currency"
SpaceX $30 Trillion Valuation (2030-2035) by Providing 5G Service and Phones to Everyone
Grand Jury Nullification in Washington, D.C.
Musk: "Interesting Idea" On Buying Media Outlets To Force Truth Narratives Amid MSM Refuge
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Now, engineers at Cornell University have developed an unusual new structure that intertwines the components together in a swirling shape, which they say lets the device recharge in a matter of seconds.
The Cornell team's new battery architecture is based on a complex, porous shape known as a gyroid, which has previously been used to make the most of the 2D wonder material graphene. The new battery also used thin films of carbon (although not thin enough to become graphene), built into a gyroidal shape using a process known as block co-polymer self-assembly.
This carbon gyroid forms the anode of the battery, and contains thousands of pores each about 40 nanometers wide. These pores were then coated with a separator layer about 10 nanometers thick, and then a sulfur cathode was added. The final ingredient to fill up the last bit of those pores is an electronically-conducting polymer called PEDOT.