>
Tuesday War Room LIVE: Trump Mentioned in ANOTHER Big Batch of Epstein Files...
Trump Names Louisiana Gov. Jeff Landry Special Envoy to Greenland
The Box Office Crisis Is Worse Than It Looks
Will The CME Raid The Silver Party?
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

They used
* 30 single-photon interferometers in total.
* The outputs are detected by 48 single-photon detectors
Scheme and experimental setup for creating and verifying 18-qubit GHZ state consisting of six photons and three degrees of freedom. a. The generation of six-photon polarization-entangled GHZ state. An ultrafast laser with a central wavelength of 788 nm, a pulse duration of 120 fs and a repetition rate of 76 MHz is focused on a lithium triborate (LBO) and up-converted to 394 nm. The ultraviolet laser is focused on three custom-designed sandwich-like nonlinear crystals, each consists of two 2-mm thick β-barium borates (BBOs) and one half-wave plate (HWP), to produce three pairs of entangled photons. In each output, two pieces of YVO4 crystals with different thickness and orientation are used for spatial and temporal compensation for the birefringence effects. The three pairs of entangled photons are combined on two polarizing beam splitters (PBSs) to generate a six-photon polarization-entangled GHZ state. b.