>
2025-09-17 -- Ernest Hancock interviews James Corbett (Corbett Report) MP3&4
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Flibe Energy has teamed with Pacific Northwest National Laboratory to examine the use of nitrogen trifluoride as an agent to remove uranium from a molten-salt fuel mixture as a preliminary step for the removal of fission products. They will look at fluorination of Lithium Fluoride-Beryllium Fluoride. The US Department of energy will provide $2,101,982 of funding. There is $525,500 of non-DOE funding.
Flibe Energy has taken the 1960's Oak Ridge molten salt reactor work and enhanced the design into the liquid-fluoride thorium reactor (LFTR). LFTR is a molten-salt reactor design that can utilize thorium more effectively and efficiently than ever before. Thorium becomes Earth's most abundant stored energy resource when used in the LFTR.
The salts used in the LFTR are combinations of lithium fluoride and beryllium fluoride (LiF-BeF2) salts often called "F-Li-Be." Unlike current materials used in nuclear reactors, liquid FLiBe is impervious to radiation damage and incredibly chemically stable. FLiBe can hold enormous amounts of thermal energy safely and at low pressures yet at high temperatures, helping FliBe Energy finally realize the dream of a compact, affordable power system that can be mass-produced to meet the world's needs for power and other essential materials.