>
Tuesday War Room LIVE: Trump Mentioned in ANOTHER Big Batch of Epstein Files...
Trump Names Louisiana Gov. Jeff Landry Special Envoy to Greenland
The Box Office Crisis Is Worse Than It Looks
Will The CME Raid The Silver Party?
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

Flibe Energy has teamed with Pacific Northwest National Laboratory to examine the use of nitrogen trifluoride as an agent to remove uranium from a molten-salt fuel mixture as a preliminary step for the removal of fission products. They will look at fluorination of Lithium Fluoride-Beryllium Fluoride. The US Department of energy will provide $2,101,982 of funding. There is $525,500 of non-DOE funding.
Flibe Energy has taken the 1960's Oak Ridge molten salt reactor work and enhanced the design into the liquid-fluoride thorium reactor (LFTR). LFTR is a molten-salt reactor design that can utilize thorium more effectively and efficiently than ever before. Thorium becomes Earth's most abundant stored energy resource when used in the LFTR.
The salts used in the LFTR are combinations of lithium fluoride and beryllium fluoride (LiF-BeF2) salts often called "F-Li-Be." Unlike current materials used in nuclear reactors, liquid FLiBe is impervious to radiation damage and incredibly chemically stable. FLiBe can hold enormous amounts of thermal energy safely and at low pressures yet at high temperatures, helping FliBe Energy finally realize the dream of a compact, affordable power system that can be mass-produced to meet the world's needs for power and other essential materials.