>
How To Become Competent, Confident, and Dangerous, with guest Doug Casey
My Hot Take On Bill Gates' Climate Change Essay | Alex Epstein #457 | The Way I Heard It
Discussion on Covid Vaccination Should Be Non-Controversial
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

The most famous 2D material is undoubtedly graphene, a slimmed-down form of carbon that's extremely strong, lightweight, and electrically and thermally conductive. But it's far from alone in that dimension – recently, scientists have also created 2D sheets of black phosphorus, gallium, molybdenum disulfide and chromium triiodide, all boasting a wide range of unusual properties.
The newest member of the family, hematene, comes from hematite, a naturally-occurring mineral that provides our main industrial source of iron. By subjecting the ore to a process called liquid-phase exfoliation, the team created sheets just three iron and oxygen atoms thick.