>
Bilderberg 2025 Reflections And Realities
Why Walmart Is Opening 'Dark Stores' That Customers Can't Go Inside
As Gaza Starves, US Green Lights More US Weapons To Israel
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Although some approaches to such shields can be heavy and/or complex, a University of Manchester PhD student has developed one that's simple, cheap and lightweight.
As a spacecraft plummets through a planet's atmosphere, the friction of the air against the rapidly-passing underside of the craft causes heat to build up. Heat shields serve to dissipate that heat, keeping it from damaging the spacecraft itself, while also helping to slow the spacecraft's descent by creating aerodynamic drag.
Presently-used shields include ones that inflate when needed, or that are mechanically deployed. Rui Wu, however, created a prototype that's a little different.
Made of a flexible, strong and heat-resistant material that folds down when not in use, his shield automatically starts spinning like a samara-type tree seed when exposed to the onrush of air that a spacecraft would experience when dropping through a planet's atmosphere.