>
Daniel McAdams - 'What I Learned from Ron Paul'
Can Trump Find a Way Out of the Box He Is in?
BREAKING: BlackRock continues dumping hundreds of millions of dollars worth of Bitcoin $BTC
Neuroscience just proved:Dolphins have more brain than humans in the areas that process...
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Despite being a low temperature phenomenon till date, superconductivity has found numerous applications in diverse fields of medicine, science and engineering. The great scientific interest in the phenomenon as well as its practical utility has motivated extensive efforts to discover and understand new superconductors. We report the observation of superconductivity at ambient temperature and pressure conditions in films and pellets of a nanostructured material that is composed of silver particles embedded into a gold matrix. Specifically, we observe that upon cooling below 236 K at ambient pressures, the resistance of sample films drops below 10-4 Ohm, being limited by instrument sensitivity. Further, below the transition temperature, samples become strongly diamagnetic, with volume susceptibilities as low as -0.056. We further describe methods to tune the transition to temperatures higher than room temperature.
Superconductivity was observed -123°C for applied fields of three to five Tesla.