>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
If a device connects wirelessly to other things, chances are high that it has an antenna in it. But as crucial as these components are, the rigid metals they're made of can limit what devices they can be built into. To help with that, researchers at Drexel University have developed a new kind of antenna that can be sprayed onto just about any surface.
The antenna is made up of an incredibly thin, metallic material known as "MXene" (pronounced "Maxine"). This stuff is a two-dimensional form of titanium carbide that's highly conductive, which allows it to transmit and direct radio waves.
Previously, we have seen MXene put to work in experimental batteries that recharge in seconds. In this case, the Drexel team created a powdered form that can be dissolved in water to form an ink or paint. That can then be sprayed onto a surface, effectively turning it into a 2D antenna in whatever shape is needed.
"Current fabrication methods of metals cannot make antennas thin enough and applicable to any surface, in spite of decades of research and development to improve the performance of metal antennas," says Yury Gogotsi, lead researcher on the project. "We were looking for two-dimensional nanomaterials, which have sheet thickness about hundred thousand times thinner than a human hair; just a few atoms across, and can self-assemble into conductive films upon deposition on any surface. Therefore, we selected MXene, which is a two-dimensional titanium carbide material, that is stronger than metals and is metallically conductive, as a candidate for ultra-thin antennas."