>
Incoming: Millions of Water Refugees from Iran
Giving Us Back Some Stolen Money
Am I Doing Enough? (Finding Peace When You Feel Behind)
Landmark trial finds fish oil drastically cuts heart attacks by 43% in dialysis patients
New Gel Regrows Dental Enamel–Which Humans Cannot Do–and Could Revolutionize Tooth Care
Researchers want to drop lab grown brains into video games
Scientists achieve breakthrough in Quantum satellite uplink
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?

If a device connects wirelessly to other things, chances are high that it has an antenna in it. But as crucial as these components are, the rigid metals they're made of can limit what devices they can be built into. To help with that, researchers at Drexel University have developed a new kind of antenna that can be sprayed onto just about any surface.
The antenna is made up of an incredibly thin, metallic material known as "MXene" (pronounced "Maxine"). This stuff is a two-dimensional form of titanium carbide that's highly conductive, which allows it to transmit and direct radio waves.
Previously, we have seen MXene put to work in experimental batteries that recharge in seconds. In this case, the Drexel team created a powdered form that can be dissolved in water to form an ink or paint. That can then be sprayed onto a surface, effectively turning it into a 2D antenna in whatever shape is needed.

"Current fabrication methods of metals cannot make antennas thin enough and applicable to any surface, in spite of decades of research and development to improve the performance of metal antennas," says Yury Gogotsi, lead researcher on the project. "We were looking for two-dimensional nanomaterials, which have sheet thickness about hundred thousand times thinner than a human hair; just a few atoms across, and can self-assemble into conductive films upon deposition on any surface. Therefore, we selected MXene, which is a two-dimensional titanium carbide material, that is stronger than metals and is metallically conductive, as a candidate for ultra-thin antennas."