>
New Study Obliterates the "Millions Saved" COVID Shot Myth
The Meltdowns Over Jimmy Kimmel Show Pulled from Air by ABC
Mike Rowe: This is HUGE story, and it's not being covered
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The fast train from Paris to Rotterdam was an hour late leaving the Gare du Nord. When it finally deposited me in the Dutch city, I discovered that the onward train to Delft had been suspended because of maintenance work on the tracks. It two took circuitous bus journeys and a taxi ride before I finally made it to my destination.
Given that I was there to learn about the future of communications, this seemed appropriate. My trip was a reminder that while shipping people from place to place is still fraught with unforeseen glitches, gargantuan amounts of data flow smoothly and swiftly all day, every day through the fiber-optic cables connecting cities, countries, and entire continents.
And yet these data networks have a weakness: they can be hacked. Among the secret documents leaked a few years ago by US National Security Agency contractor Edward Snowden were ones showing that Western intelligence agencies had managed to tap into communication cables and spy on the vast amounts of traffic flowing through them.
The research institute I was visiting in Delft, QuTech, is working on a system that could make this kind of surveillance impossible. The idea is to harness quantum mechanics to create a flawlessly secure communications network between Delft and three other cities in the Netherlands by the end of 2020 (see map below for the planned links).
The QuTech researchers, led by Stephanie Wehner and Ronald Hanson, still face a number of daunting technical challenges. But if they succeed, their project could catalyze a future quantum internet—in much the same way that Arpanet, which the US Department of Defense created in the late 1960s, inspired the creation of the internet as we know it today.