>
NATO and Ukraine to Hold Emergency Talks After Russian Hypersonic Missile Attack
Flood Of Chinese Goods Into North America Earns Mexico "Backdoor" Label
Make Army Futures Command Great Again
Berlin Teachers Sound Alarm Over Educational Crisis Caused By Multiculturalism
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The groundbreaking method may prove useful in treating myriad malignancies, inflammatory diseases and rare genetic disorders.
Lipid nanoparticles (LNP) were used to deliver modified messenger RNA to treat inflammatory bowel diseases and other diseases.
Prof. Dan Peer, Molecular Cell Biology at TAU's Faculty of Life Sciences, led the research for the new study.
Over the past few years, lipid carriers encapsulating messenger RNAs (mRNAs) have been shown to be extremely useful in altering the protein expressions for a host of diseases. But directing this information to specific cells has remained a major challenge.
"In our new research, we utilized mRNA-loaded carriers — nanovehicles carrying a set of genetic instructions via a biological platform called ASSET — to target the genetic instructions of an anti-inflammatory protein in immune cells," says Prof. Peer.