>
Big Tech's AI engines are becoming STUPID as they push narrative control
Robert F. Kennedy Jr. Announces Raids on Chinese Vape Products to Protect Children's Health
Close Friend Honors Iryna Zarutska with Heartfelt Tribute Video
AG Pam Bondi Clarifies Her Stance on First Amendment Following Backlash...
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Last year, a cutting edge scientific imaging technology called cryo-electron microscopy earned a Nobel Prize for chemistry, lauded by the committee as ushering in a "revolution in biochemistry." The technique allows scientists to visualize biomolecules in their natural state for the first time ever, and one year on is already opening up some exciting possibilities. Now, scientists have used it to image a high-potential cancer-killing virus in unprecedented detail, allowing them to now ponder how it might be genetically modified to better do the job.
According to the Nobel statement accompanying the announcement last year, cryo-electron microscopy has allowed scientists to "visualise processes they have never previously seen." It relies on a careful freezing method that turns water inside cells into a solid to preserve their cellular structure, along with a modified electron microscope that blasts it with weakened beams for that very same reason.
This, paired with pioneering mathematical algorithms, has already enabled scientists to use cryo-electron microscopy to probe the secrets of poisonous bacteria, polio-fighting plant viruses and the immune-regulating effects of tick saliva. Now, scientists at the University of Otago and the Okinawa Institute of Science and Technology (OIST) are using it to explore the potential for designer viruses that kill off cancer.