>
2025-11-13 -- Stewart Rhodes - OathKeepers Relaunch & Wash. D.C. Rally - MP3&4
2025-11-13 — Ernest Hancock interviews Phranq Tamburri - Trump Report - MP3&4
38 Special vs. 380 ACP: Can They Be That Different?
UN Targets Homeschoolers Through "Human Rights" Scheme
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

Last year, a cutting edge scientific imaging technology called cryo-electron microscopy earned a Nobel Prize for chemistry, lauded by the committee as ushering in a "revolution in biochemistry." The technique allows scientists to visualize biomolecules in their natural state for the first time ever, and one year on is already opening up some exciting possibilities. Now, scientists have used it to image a high-potential cancer-killing virus in unprecedented detail, allowing them to now ponder how it might be genetically modified to better do the job.
According to the Nobel statement accompanying the announcement last year, cryo-electron microscopy has allowed scientists to "visualise processes they have never previously seen." It relies on a careful freezing method that turns water inside cells into a solid to preserve their cellular structure, along with a modified electron microscope that blasts it with weakened beams for that very same reason.
This, paired with pioneering mathematical algorithms, has already enabled scientists to use cryo-electron microscopy to probe the secrets of poisonous bacteria, polio-fighting plant viruses and the immune-regulating effects of tick saliva. Now, scientists at the University of Otago and the Okinawa Institute of Science and Technology (OIST) are using it to explore the potential for designer viruses that kill off cancer.