>
Boots on the Ground...The news is getting worse so keep prepping.
O'Keefe Media Group: Secret Service Agent Assigned to Vance Leaks Sensitive Information
Montana Program Makes Youth Offenders Talk with Their Victims and Recidivism Plummets
Gorgeous Bridge Allows for Walking and Biking Between US and Canada Set to Open in 2026
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging

Scientists in Switzerland have now developed a new form of the material they say has unparalleled adhesive properties, a characteristic that could prove particularly useful in trying to repair cartilage and meniscus.
Unlike some other tissues in the human body, cartilage and meniscus have a negligible supply of blood, or none at all, and therefore won't regenerate on their own once damaged. Scientists have already looked to offer a helping hand by injecting hydrogels packed with different drugs into the damaged areas, but these tend to wash away due to the natural machinations of the human body and the flow of its fluids.
In a new study, scientists at Switzerland's École Polytechnique Fédérale de Lausanne describe a new kind of material they think can stick to the task. Their hydrogel is almost 90 percent water and includes of a web of cross-linked polyethylene glycol dimethacrylate together with cross-linked alginate, reinforced with nanofibrillated cellulose.
The resulting structure is claimed to be 10 times more adhesive than commercially available bioadhesives, and due to its high water content, bears a strong similarity to the natural tissues it is supposed to heal. But most importantly, it remains highly adhesive over time because the uniquely layered material absorbs the mechanical stresses that would otherwise wash it away.