>
Meet The Heroes That Gave Their Own Lives To Save Others During The Texas Flood
Scientists Reverse Parkinson's Symptoms in Mice: 'We were astonished by the success'
America Is A Great Nation And A Work-In-Progress | Something To Stand For #60 | The Way I Heard It
Centuries of hidden evidence: Vaccines' neurological toll revealed
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Scientists in Switzerland have now developed a new form of the material they say has unparalleled adhesive properties, a characteristic that could prove particularly useful in trying to repair cartilage and meniscus.
Unlike some other tissues in the human body, cartilage and meniscus have a negligible supply of blood, or none at all, and therefore won't regenerate on their own once damaged. Scientists have already looked to offer a helping hand by injecting hydrogels packed with different drugs into the damaged areas, but these tend to wash away due to the natural machinations of the human body and the flow of its fluids.
In a new study, scientists at Switzerland's École Polytechnique Fédérale de Lausanne describe a new kind of material they think can stick to the task. Their hydrogel is almost 90 percent water and includes of a web of cross-linked polyethylene glycol dimethacrylate together with cross-linked alginate, reinforced with nanofibrillated cellulose.
The resulting structure is claimed to be 10 times more adhesive than commercially available bioadhesives, and due to its high water content, bears a strong similarity to the natural tissues it is supposed to heal. But most importantly, it remains highly adhesive over time because the uniquely layered material absorbs the mechanical stresses that would otherwise wash it away.