>
Black Rock Plans For The British Farmer
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Scientists in Switzerland have now developed a new form of the material they say has unparalleled adhesive properties, a characteristic that could prove particularly useful in trying to repair cartilage and meniscus.
Unlike some other tissues in the human body, cartilage and meniscus have a negligible supply of blood, or none at all, and therefore won't regenerate on their own once damaged. Scientists have already looked to offer a helping hand by injecting hydrogels packed with different drugs into the damaged areas, but these tend to wash away due to the natural machinations of the human body and the flow of its fluids.
In a new study, scientists at Switzerland's École Polytechnique Fédérale de Lausanne describe a new kind of material they think can stick to the task. Their hydrogel is almost 90 percent water and includes of a web of cross-linked polyethylene glycol dimethacrylate together with cross-linked alginate, reinforced with nanofibrillated cellulose.
The resulting structure is claimed to be 10 times more adhesive than commercially available bioadhesives, and due to its high water content, bears a strong similarity to the natural tissues it is supposed to heal. But most importantly, it remains highly adhesive over time because the uniquely layered material absorbs the mechanical stresses that would otherwise wash it away.