>
Will Trump End Sham Democracy Promotions?
Review: Thumb-sized thermal camera turns your phone into a smart tool
Americans stranded in Jamaica plea for help as 'worst ever hurricane' to slam Caribbean isla
Urgent warning to Gmail users as 183 MILLION passwords are stolen in data breach...
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

They combined single-spin qubit called a Loss-DiVincenzo qubit and a singlet-triplet qubit.
The Loss-DiVincenzo qubit has very high control fidelity—meaning that it is in a clear state, making it ideal for calculations, and has a long decoherence time. It will stay in a given state for a relatively long time before losing its signal to the environment. Unfortunately, the downside to these qubits is that they cannot be quickly initialized into a state or read out.
The singlet-triplet qubit is quickly initialized and read out, but it quickly becomes decoherent. They combined the two types with a type of quantum gate known as a controlled phase gate, which allowed spin states to be entangled between the qubits in a time fast enough to maintain the coherence, allowing the state of the single-spin qubit to be read out by the fast singlet-triplet qubit measurement.