>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
The long bones in our arms and legs have a layer of smooth, compressible cartilage at each end, which gradually transitions to hard bone underneath. This dual-density combo is known as osteochondral tissue, and when it develops cracks or otherwise gets damaged, conditions such as disabling arthritis can result. Although such injuries frequently afflict athletes, they can occur in pretty much anyone.
For injuries to more uniform types of bone, various scientific institutions have created the previously-mentioned scaffolding. Implanted at the injury site, the three-dimensional material basically provides a roosting site for bone cells, helping them to move in from the adjacent bone and start reproducing. Eventually, they simply take over from the material, replacing it as it harmlessly dissolves.
Now, researchers from the University of Maryland and Houston-based Rice University have developed a version of this material that's tailored to healing osteochondral tissue.