>
Mirrored concrete for cheap solar energy
All Government Is Dictatorial Because All Government Is Totalitarian
Putin Says He's Ready for Peace
Medicaid Fraud in Minnesota at least $9 Billion Since 2018
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

The long bones in our arms and legs have a layer of smooth, compressible cartilage at each end, which gradually transitions to hard bone underneath. This dual-density combo is known as osteochondral tissue, and when it develops cracks or otherwise gets damaged, conditions such as disabling arthritis can result. Although such injuries frequently afflict athletes, they can occur in pretty much anyone.
For injuries to more uniform types of bone, various scientific institutions have created the previously-mentioned scaffolding. Implanted at the injury site, the three-dimensional material basically provides a roosting site for bone cells, helping them to move in from the adjacent bone and start reproducing. Eventually, they simply take over from the material, replacing it as it harmlessly dissolves.
Now, researchers from the University of Maryland and Houston-based Rice University have developed a version of this material that's tailored to healing osteochondral tissue.