>
Thune Moves Forward With 'Nuclear Option' To Confirm Trump's Nominees
Father Of Ukrainian Girl Brutally Murdered In US Missed Funeral Due To Martial Law
The Assassination of Charlie Kirk
Shell promises 10-minute EV charging with its magical battery fluid
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Scientists may have just found the perfect substitute for the inefficient and polluting gases used in most refrigerators and air conditioners.
Researchers from the UK and Spain have begun using a kind of organic plastic crystal called "neopentylglycol." (The word "plastic" refers not to its chemical composition, but rather to its malleability.)
When put under pressure, these plastic crystals yield huge cooling effects – enough that they are competitive with conventional coolants. Additionally, the material is inexpensive, widely available, and functions at close to room temperature.
Details of their discovery are published in the journal Nature Communications.
The gases currently used in the vast majority of refrigerators and air conditioners —hydrofluorocarbons and hydrocarbons (HFCs and HCs) — are toxic and flammable. When they leak into the air, they also contribute to global warming.
"Refrigerators and air conditioners based on HFCs and HCs are also relatively inefficient," said Dr. Xavier Moya, a professor from the University of Cambridge and leader of the research.