>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
The new system is parallel programming of an ionic floating-gate memory array, which allows large amounts of information to be processed simultaneously in a single operation. The research is inspired by the human brain, where neurons and synapses are connected in a dense matrix and information is processed and stored at the same location.
Sandia researchers demonstrated the ability to adjust the strength of the synaptic connections in the array using parallel computing. This will allow computers to learn and process information at the point it is sensed, rather than being transferred to the cloud for computing, greatly improving speed and efficiency and reducing the amount of power used.
Through machine learning technology, mainstream digital applications can today recognize and understand complex patterns in data. For example, popular virtual assistants, such as Amazon.com Inc.'s Alexa or Apple Inc.'s Siri, sort through large streams of data to understand voice commands and improve over time.
With the dramatic expansion of machine learning algorithms in recent years, applications are now demanding larger amounts of data storage and power to complete these difficult tasks. Traditional digital computing architecture is not designed or optimized for artificial neural networks that are the essential part of machine learning.