>
WATCH: "Let This Serve as Notice… BEWARE!" - Trump Posts EPIC Video...
OSL 115 - Why I Am Done At Infowars
EXCLUSIVE: Alex Jones Exposes Why Owen Shroyer Really Quit...
I asked A.I. to design the ultimate FPV Flying Wing... and it's INSANELY EFFICIENT!
Neuroscientists just found a hidden protein switch in your brain that reverses aging and memory loss
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
By combining moondust and lasers, Laser Zentrum Hannover (LZH) and the Institute of Space Systems (IRAS) of the Technical University of Braunschweig are experimenting with ways to use 3D printing to build lunar colonies. Slated to fly in 2021, the new Moonrise laser system will be incorporated in the Berlin-based PTScientists unmanned lunar rover and will be used to demonstrate if it is possible to turn lunar regolith into practical building materials.
With various space agencies and private companies committed to setting up long-term human outposts on the Moon, the problem of building the habitats and other structures goes from thought experiments to a list of practical problems. The biggest of these is almost certainly the massive costs of moving materials to the Moon with cost per kilogram, according to LZH, working out to about €700,000 (US$782,000).
The Moonrise laser printing system is based on the idea that the best alternative to shipping materials to the Moon would be to use the local resources as a substitute. Still in the experimental phase, the 3 kg (6.6 lb) laser is designed to see if the regolith or lunar topsoil can be melted down and made into building structures.
Moonrise has been under development for nine months with the laser itself and its optics already very far along, but the team says that they not only need to get the core technology right, but also to create a proper synthetic version of the regolith to allow for Earthside testing.