>
Deporting Illegals Is Legal - Military In America's Streets Is Not!
Turn Your Homesteading into a Farm (Making Money on the Homestead) | PANTRY CHAT
"History Comes In Patterns" Neil Howe: Civil War, Market Crashes, and The Fourth Turning |
How Matt Gaetz Escaped Greenberg's Honeypot and Exposed the Swamp's Smear Campaign
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
By combining moondust and lasers, Laser Zentrum Hannover (LZH) and the Institute of Space Systems (IRAS) of the Technical University of Braunschweig are experimenting with ways to use 3D printing to build lunar colonies. Slated to fly in 2021, the new Moonrise laser system will be incorporated in the Berlin-based PTScientists unmanned lunar rover and will be used to demonstrate if it is possible to turn lunar regolith into practical building materials.
With various space agencies and private companies committed to setting up long-term human outposts on the Moon, the problem of building the habitats and other structures goes from thought experiments to a list of practical problems. The biggest of these is almost certainly the massive costs of moving materials to the Moon with cost per kilogram, according to LZH, working out to about €700,000 (US$782,000).
The Moonrise laser printing system is based on the idea that the best alternative to shipping materials to the Moon would be to use the local resources as a substitute. Still in the experimental phase, the 3 kg (6.6 lb) laser is designed to see if the regolith or lunar topsoil can be melted down and made into building structures.
Moonrise has been under development for nine months with the laser itself and its optics already very far along, but the team says that they not only need to get the core technology right, but also to create a proper synthetic version of the regolith to allow for Earthside testing.