>
United Nations, World Bank Target Small-Scale Chicken Farms in Bird Flu 'Global Summit'
Elon Musk posted this by Scott Adams, on all of the Leftists busted, think on it!
Tulsi Gabbard has tough words for the "empty" people who celebrated Charlie Kirk's mur
Sharaa says agreement with Moscow enabled swift fall of Assad
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Called the Scalable TActile Glove (STAG), it uses 550 tiny pressure sensors to generate patterns that could be used to create improved robotic manipulators and prosthetic hands.
If you've ever fumbled in the dark for your glasses or your phone, then you know that humans are very good at figuring out what an object is just by touch. It's an extremely valuable ability and one that roboticists and engineers would love to emulate. If that was possible, then robots could have much more dexterous manipulators and prosthetic hands could be much more lifelike and useful.
One way of doing this is to gather as much information as possible about how humans are actually able to identify by touch. The reasoning is that if there are large enough databases, then machine learning could be brought to bear to perform analysis and deduce not only how a human hand can identify something, but also to estimate its weight – something robots and prosthetic limbs have trouble doing.