>
BANG! Rachel Maddow just got CLOWNED on live television
Eruption In "BleachBit," "Wipe Hard Drive," "Offshore Bank" Searches I
Federal Judge Sides With D.O.G.E. - Full Access to ALL Electronic Records! Big Win for Trump
STOP IT! The Great Taking Documentary Film
Flying Car vs. eVTOL: Which Is the Best New Kind of Aircraft?
NASA and General Atomics test nuclear fuel for future moon and Mars missions
Iran Inaugurates First-Ever Drone Carrier Warship In Persian Gulf
Fix your dead Lithium RV battery - How to Reset LiFePO4 Battery BMS
New fabric can heat up almost 50 degrees to keep people warm in ultracold weather
Finally! A Battery That's Better Than Energizer and Duracell!
What's better, 120V or 240V? A Kohler generator experiment.
MIT names 10 breakthrough technologies to watch in 2025
Watch China's 4-legged 'Black Panther 2.0' robot run as fast as Usain Bolt
Scientists Just Achieved a Major Milestone in Creating Synthetic Life
From the time we're conceived as just a single cell, to our wounds healing themselves in adulthood, cell division is a key part of how living organisms grow and survive. While we understand how this works on the broad scale, the nuances are still somewhat lost on us.
So the researchers on the new study set out to investigate the process further. To do so, they removed the "ingredients" from a cell and reconstructed them outside. But what they didn't expect was that this makeshift cell would undergo division like a normal cell.
First the team separated out actin, a protein that's key to the cellular division process. The actin proteins, which are long and rod-shaped, tended to clump together in parallel lines, forming a kind of almond-shaped droplet.
The real magic happened when the researchers added myosin, a motor protein that plays a part in muscle contraction. Surprisingly, the myosin moved towards the center of the actin droplets, then pinched them off from the middle, forming two separate "cells."