>
Schumer Shutdown: Senate Refuses To Pass Continuing Resolution After Democrats Melt Down
We Could Be Entering 1929 Style Collapse | Emergency Broadcast with David Rogers Webb
China Unveils Quantim Chip 1 Quadrillion Times Faster Than The World's Top Supercomputer
Massie Donations Pour In - Jewish Group Vows To Help Trump Oust Him
Solar film you can stick anywhere to generate energy is nearly here
Honda's New Hydrogen Fuel Cell Produces More Power For Half The Price
Paper battery could take over for lithium-ion ... in EVs and beyond
Musk Begins Testing His Starlink Terminals in US Airspace System
Mercedes' Solid-State Battery Prototype Comes Out Of The Lab, Onto The Road
Scientists discover mysterious form of energy in Egypt's pyramids that should only exist...
Microsoft Majorana 1 Chip Has 8 Qubits Right Now with a Roadmap to 1 Million Raw Qubits
The car that lets you FLY over traffic jams! Futuristic £235,000 vehicle takes flight...
Floating nuclear power plants to be mass produced for US coastline
From the time we're conceived as just a single cell, to our wounds healing themselves in adulthood, cell division is a key part of how living organisms grow and survive. While we understand how this works on the broad scale, the nuances are still somewhat lost on us.
So the researchers on the new study set out to investigate the process further. To do so, they removed the "ingredients" from a cell and reconstructed them outside. But what they didn't expect was that this makeshift cell would undergo division like a normal cell.
First the team separated out actin, a protein that's key to the cellular division process. The actin proteins, which are long and rod-shaped, tended to clump together in parallel lines, forming a kind of almond-shaped droplet.
The real magic happened when the researchers added myosin, a motor protein that plays a part in muscle contraction. Surprisingly, the myosin moved towards the center of the actin droplets, then pinched them off from the middle, forming two separate "cells."