>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
They also are working on further optimizations including distributing the decryption problem among a network of smaller quantum computers.
In 2015, researchers estimated that a quantum computer would need a billion qubits to break 2048-bit RSA encryption. Current quantum computers have about 70-100 qubits for noisy superconduction qubits and will soon have 5600 for D-Wave Quantum annealing systems.
A quantum computer will be able to break regular commercial financial encryption using 20 million qubits in just eight hours.
They found a more efficient way to perform a mathematical process called modular exponentiation. This is the process of finding the remainder when a number is raised to a certain power and then divided by another number. This process is the most computationally expensive operation in Shor's algorithm.