>
James O'Keefe: My entire speech at AmericaFest 2025. We're not stopping. Join us to expose..
U.S. vs. Chinese Military Comparison – Focus on Asia-Taiwan Scenario
DoJ Sues Four More States for Failing To Produce Voter-roll Data
World's Largest Aviation Giant Abandons Google Over Security Concerns
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

The spacesuit will have a soft and stretchable self-healing skin (or membrane) located in the outer layer that not only protects the astronaut but also collects data through integrated, transparent sensors embedded in the membrane. These sensors are capable of visually displaying environmental and membrane structural information, providing visual feedback to the wearer about the surroundings.
The hybrid and intelligent spacesuit proposed will be designed with the philosophy of enhancing motion and dexterity, reparability and sensor integration to interact with the soundings and detect damage. The proposed hybrid technology adding full-body soft robotic elements to the gas-pressurized spacesuit will enable enhanced dexterity, increased comfort, and a feeling of normalcy that will facilitate both scientific and exploration operations on planetary missions like those expected for Mars' surface. Additionally, the soft-robotic layer has the potential to provide some level of mechanical counter pressure (MCP) to the wearer, thus decreasing the gas-operating pressure within the suit, therefore reducing the time needed for pre-breathing protocols while enhancing even more the mobility, which has a direct impact on the duration, metabolic cost, and fatigue associated with an EVA.