>
Why Geological Maps Are the Best Investment You've Never Heard Of
High School Student Discovers 1.5 Million Potential New Astronomical Objects...
UK Supreme Court says legal definition of 'woman' excludes trans women, in landmark ruling
Major Problem in Physics Could Be Fixed if The Whole Universe Was Spinning
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
With an ability to stiffen up under a certain type of light and go soft in the dark, the new material shows particular promise for the world of 3D printing, where it could be used as a temporary support for complex structures that melts away when the job is done.
The new material is the handiwork of scientists from Australia's Queensland University of Technology (QUT), Belgium's Ghent University and Germany's Karlsruhe Institute of Technology, and consists of a polymer structure that can change its structure in response to light, and then revert back again.
Key to its changeable properties are the inexpensive chemical compounds the team has worked into the material. Among these are coupling molecules called triazolinediones and an ingredient common in moth repellent called napthalene.
Together, these enable the material to stay solid and firm so long as it is exposed to green LED light. But when the researchers switch the light off and the material is left in the dark for a little while, these chemical bonds begin to break up and cause it to become a soft, runny mess. Switching the light back on then sees it harden up once again.