>
2025-11-13 -- Stewart Rhodes - OathKeepers Relaunch & Wash. D.C. Rally - MP3&4
2025-11-13 — Ernest Hancock interviews Phranq Tamburri - Trump Report - MP3&4
38 Special vs. 380 ACP: Can They Be That Different?
UN Targets Homeschoolers Through "Human Rights" Scheme
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

Ordinarily, bioprinting is performed in a fashion much like regular 3D printing – an object is slowly built up as successive layers of material are deposited one on top of the other. This means that it can take hours or perhaps days to produce even a simple item.
Lately, though, scientists have been experimenting with a faster method of printing a variety of non-biological objects, which is known as volumetric printing. Working with colleagues at the Netherlands' Utrecht University, a team from the Swiss EMPA research institute has adapted that technology to produce body parts measuring up to several square centimeters in size – these parts have included a valve similar to a heart valve, a meniscus, and a complex-shaped section of femur.
The process involves projecting a laser beam down into a slowly-spinning tube that's filled with a stem cell-laden photosensitive hydrogel. By selectively focusing the light energy at specific locations within the tube, it's possible to solidify the gel in those places only, building up the desired three-dimensional object within a matter of seconds. The stem cells are unharmed in the process.