>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Ordinarily, bioprinting is performed in a fashion much like regular 3D printing – an object is slowly built up as successive layers of material are deposited one on top of the other. This means that it can take hours or perhaps days to produce even a simple item.
Lately, though, scientists have been experimenting with a faster method of printing a variety of non-biological objects, which is known as volumetric printing. Working with colleagues at the Netherlands' Utrecht University, a team from the Swiss EMPA research institute has adapted that technology to produce body parts measuring up to several square centimeters in size – these parts have included a valve similar to a heart valve, a meniscus, and a complex-shaped section of femur.
The process involves projecting a laser beam down into a slowly-spinning tube that's filled with a stem cell-laden photosensitive hydrogel. By selectively focusing the light energy at specific locations within the tube, it's possible to solidify the gel in those places only, building up the desired three-dimensional object within a matter of seconds. The stem cells are unharmed in the process.