>
The Vain Struggle to Curb Congressional Stock Trading
The Tesla Model S Is Dead. Here's Why It Mattered
America's First Car With Solid-State Batteries Could Come From This Little-Known EV Maker
POWERFUL EXCLUSIVE: Learn Why Silver, Gold, & Bitcoin Plunged After JD Vance Announced...
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

Space capabilities from SpaceX Super Heavy Starship and being able to build in space will enable 1000 to 1 million times larger projects on the moon and in cis-lunar orbits.
OWL-Moon
OWL-MOON: Very high resolution spectro-polarimetric interferometry and imaging
from the Moon: exoplanets to cosmology
A 100-meter space telescope on the moon will let us directly observe the height of mountains on exoplanets.
A giant moon telescope will let us answer three major questions in astronomy.
1) the detection of biosignatures on habitable exoplanets,
2) the geophysics of exoplanets and
3) cosmology.
Detecting Alien Life in Other Solar Systems
One of our main science objectives is the characterization of exoplanets and biosignatures. There are about ten potentially habitable planet candidates up to 10 pc. But there is no guarantee that even a single one will present biosignatures. We must enlarge the sample and go up to say 40 pc. An Earth-sized planet at 1 AU from a G star has a planet/star brightness ratio of 3.10^−9 for an albedo of 0.3. Thus, for a 8th magnitude star, it means a 32nd magnitude target. For 1 nm spectral resolution spectroscopy needed to detect atomic and molecular emission lines, consider the goal of 1000 photons detected in 3 hours. This needs a 50-meter telescope. To detect 500 photons in the bottom of absorption lines having a depth 10 times the continuum in 3 hours, one would need a 100-meter telescope.