>
NATO and Ukraine to Hold Emergency Talks After Russian Hypersonic Missile Attack
Flood Of Chinese Goods Into North America Earns Mexico "Backdoor" Label
Make Army Futures Command Great Again
Berlin Teachers Sound Alarm Over Educational Crisis Caused By Multiculturalism
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The N7+ process with EUV technology is built on TSMC's successful 7nm node and paves the way for 6nm and more advanced technologies.
The leading edge is currently at 7+ with about three layers done using EUV. In 2020, TSMC will ramp 5nm in the second half with significantly increased EUV usage of about 15 layers, followed by 6nm ramping at the end of 2020 with about four layers done in EUV, according to Jim Fontanelli, a senior analyst with Arete Research.
N7+ is also providing improved overall performance. When compared to the N7 process, N7+ provides 15% to 20% more density and improved power consumption, making it an increasingly popular choice for the industry's next-wave products. TSMC has been quickly deploying capacity to meet N7+ demand that is being driven by multiple customers.