>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
The Airbus A320 is a hefty machine. Weighing in at 183,000 pounds fully loaded, the plane needs to be strong enough to withstand the constant forces of wind but light enough to be economical to operate. Every pound costs fuel: Your carry-on laptop actually costs an airline an extra 33 cents in gas, for instance, and a magazine costs a nickel.
The advances brought by decades of aeronautical engineering have more or less plateaued, which is why Airbus has partnered with the design and engineering software company Autodesk to design planes of the future in a new way. The two companies are using a tool called generative design—basically, programming software with all sorts of physical parameters and commanding it to develop a design around those rules. Generative design can do anything from shape a superstrong yet minimal chair to calculate wildly complex weight-to-strength ratios in airplane parts that a human brain couldn't consider.
So far, Airbus has used generative design to develop a 3D-printed "bionic partition" for airplane cabins that's 45% lighter yet 8% stronger than anything it's used to date. But the company is pushing further. It's now applying generative design tools to reengineer many more parts of its planes, from the vertical stabilizer (that tall fin that's on the back of a jet—now 20% lighter than ever before), to the legs of its seats, to the interior layout of the cabin, to how its factories are built for optimal production and cost-effectiveness.