>
Why I LOVE America: Freedom, Opportunity, Happiness
She Went On a Vacation to Iran: 'It was Nothing Like I Expected'
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
New Groundbreaking Study Reveals How Vitamin C Reactivates Skin Regeneration Genes
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Developed by scientists at Illinois' Northwestern University and the City University of Hong Kong, the experimental technology incorporates a thin, soft, flexible and slightly-tacky elastomer patch that temporarily adheres to the user's skin.
Embedded within that patch is an array of wirelessly-powered, wirelessly-controlled, disc-shaped electronic actuators. A 15 by 15-cm (5.9-inch) prototype presently contains 32 of these devices, although it is hoped that as the actuators get smaller, it will be possible to pack more of them into a given area.
The idea is that when an epidermal VR patch is activated – such as by a VR game – some of the actuators will vibrate against the wearer's skin, stimulating that person's sense of touch in a specific area. Each of the actuators is designed to resonate most strongly at 200 cycles per second, the frequency at which human skin exhibits maximum sensitivity.