>
LISTEN: Deranged Leftist Karen Leaves Voicemail Threatening "WAR" Against Michigan Billboa
'Welcome to Nazi America': Bluesky Leftists Melt Down After Disney Pulls Jimmy Kimmel's
Constitution Day and Tucker's Rule
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Developed by scientists at Illinois' Northwestern University and the City University of Hong Kong, the experimental technology incorporates a thin, soft, flexible and slightly-tacky elastomer patch that temporarily adheres to the user's skin.
Embedded within that patch is an array of wirelessly-powered, wirelessly-controlled, disc-shaped electronic actuators. A 15 by 15-cm (5.9-inch) prototype presently contains 32 of these devices, although it is hoped that as the actuators get smaller, it will be possible to pack more of them into a given area.
The idea is that when an epidermal VR patch is activated – such as by a VR game – some of the actuators will vibrate against the wearer's skin, stimulating that person's sense of touch in a specific area. Each of the actuators is designed to resonate most strongly at 200 cycles per second, the frequency at which human skin exhibits maximum sensitivity.